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FUNCTIONAL OCCUPATION MEASURES AND ERGODIC
COST PROBLEMS FOR SINGULARLY PERTURBED
STOCHASTIC SYSTEMS *
larold J. Kushner" Division of Applied Matheniatics

Brown, L' niversztv
Providence. RI.. 02912, U.S.A.

ABSTRACT.
Functional occupation neasures are an extension to occupation measures
on the path space of the usual definition of occupation measures for stochas-
tic processes Thcy are used to. get linit and approximatior, theorems fc:
average cost ;'er unit tine problems for many types of controlled or uncoi-

t 0 rj , J, CC SSL: -li 1 i, rtcl. ,.dc.i. , i iifuo f r', :-::.
difiusions. and singularly perturbed controlled diusions There are exter,-
siozis to wide ba|ndwidth ijOise driven systems arid to many other models
Tlht nttiod proides a coriemen and powerful waN of ci,;racteriziig the
processes associated with the weak limits of the occupation measures and

il.t sanpic hmits of th( avere.c costs per unit time. as thit various pa-
raniettrs of tht problem go, to their limits.The method can be used to gt,.
approximate optiriality theorems arid similar results for processes winich
are only approximated by jump diffusions and are of interest over a long
time period.

INTRODUCTION.
It. this paper we develop a powerful tool for dealing with limit problems
and approximations for controlied or uncontrolled processes which are of in-
terest over a long perioC c..! time. The basic applications of interest cor:zerr.
ergcdic cost problems for processes governed by either singularly perturr,-d
s" ::.a :: difercntia' equations or % ice i'andc rioisc driver, systcr| i t
sruarl1v perturbed or not' \%'( want to 5ic0 that certain averac:.- c
"ri;m:: :S'stems car, be used to get good Lpproximations to the optima.
vaju,_ fui,:Lorts anci conzroi for tie pysica'" systenzj- as we,. as to c*.a'-
a:;e:ra te .. averaged" systems. Due tc space limitations we concen:ra,.
or. :.e singularly perturbed diffusion mode: arid or reflected diffusiors, It
v.i . be a-.,ara-i: tha" the general techniques of averaging and of tht use of
tirt ":unctional occupation. measures" which are employed in this paper are
readi.v usable for a wide variety of problems.

The fundamental mathematica! technique involves a way of character-
izing processes associated with the limits of certain occupation measures in

* This research was*supported in part by contracts ARO DAAL-
03-S6-K-0171 and AFOSR 89-0015

The author would like to acknowledge his appreciation for many helpfu.
discussions wit. Pro. Mauro Piccioni of the University of Rome
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a way that is mathematically interesting and readily usable. The occupa.
tioll measures which have been used to date in weak convergence analyses
are essentially occupation measures over the state space of the process.
Tney measure the relative amount of time that the sample paths spend it1
the sets on the state space. The functional occupation measures are occu-
pation measures over tA sets in te pat, space. Their main use here is
in the characterization of the processes which %ield the pathwise limits of
"ergodic averages". They have been used in the large deviations hterature
[12J. but in very different ways and with very different purposes. In this
paper, we treat the background ideas, and illustrate somt of the results
which can be obtained.

I-or each f, ht x'(.) dtiiote i process with values In T,, ucid:,-
spact. and let (loosely speaking) u'(.) be a control process for - For
bounded and continuous k(.), define j r = .T '(z'(s),u'(s)ds/T. The
r'(-) might be, for example, a singularly perturbed diffusion or a wide bard
noise driven system. In the singular perturbation case, the c indexes the
singular perturbation. In the wide band noise case, the c indexes the inverse
of the bandwidth. We are interested in the limits I of the I. as - 0 and
as T - oc, and in the approximation of r'(.) by "simpler " processes
z(.) which are useful for approximating the values of functionals of x'(.)
for smal! c and large T- These simpler processes are stationary and have
mean average cost per unit time .In the controlled case. we want controis
that are "good" or nearly optimal for z(.) to be 'good" or nearly optimal
for the Z'(.) for small c and large T. The functional occupation measure
method facilitates the characterization of these simpler processes. It uses
Weak convergence techniques connected with the sequence of functional
occupation measures for the r'(.).

Ir, order to introduce the ideas in a s:mrk v-a- we star: w:':. :ne
classica occupation measures and use the. following assurr: ors

.41. b(.).v(.) ary confnuous functon, with c crouc. a mos, hnear
C S Z --x:

Let w(.- denote a standard vector-valued Wiener process. befit the
process (.J) as the solution to

dz = b(z) + c(z)du.x E R, 1

Let A denote the differential generator of z(.).

Al.f. {:(1).1 < Cc) is bounded tr probabili..

A2 15. ,"2."ha, a uniquf intarian measurt



If the state space of r(.) is not bounded, then conditions such as (AI.2)
are usually verified via a stochastic Liapunov function method. Let B(S)
denote the Borel sets of the metric space S. Define the occupation measure
Q~(.) by

Q'(B) = :(i ))(B), B E (R'),

and the normalized occupation measure

QT(B) = + Q(B)dt.

i: CC'-) denote the continuous real valued functions on S. Ci(S) the subset
of iounded fuictioiis, C(S) the subset of functions with compa:: suPor".
and C,(P ) the further subset of functions whose mixed partial derivatives

are continuous-up to second order, when S = r
It is well known that [13 under appropriate conditions, the sequence

of measure-valued random variables {QT(')) converges in probability (in
the weak topology) to the invariant measure p(.), as T - oc: i.e., for each
f(,) E CQ(R'), f f(z)Q(dz) - f f(z)p(dr) in probability as T - oc.
Various extensions of this result to problems in stochastic control theory
were used in [ 21 to prove the existence of an optima! feedback control for
an ergodic cost problem for a controlled version of (1.1). They were used ir.
[3] and L4: to get many approximation and convergence results for ergodic
cost problems for wide band noise driven systems operating over a very
long time interval.

In this paper. we take a point of view which is more general and which
which has numerous practical advantages. Let D'1O. c) denote the space
of R'-valued functions which are right continuous and have left hand limits
and which is endowed with the Skorohod topolog\ i&. Chapter ,. T-he
space DO. o. is complete and separable, and we let -(.) denote its gernes,:
element. For o(-) in D'[O,oc), define the shifted function ,,(.) = 0(1 -
Define thc shifted process z, = z(". , and define the occuratior mas..,
P'(.) by P:LBc) = I.,, )}(BEc) and the functional occupatior masir

PT(Bc) = -T P_(B)d,. (1.2

Under (A1.2). {PT(.),T < oc} is a tight sequence of measure-valued
random variables (see Sections 2 and 3 for the exact definitions and proofs).
Let P (.) denote the sample value of P('). For almost all ":. .T (.) is a
measure on 6(D'(O.oc)), the Borel sets of D'[0., o), and hence induces a
process with paths in D" [0. x). Let P(.) denote a measure-valued ran-
dor variable which is a weak limit of a weakly convergent subsequence of
{P.P('),T < oc). Suppose that the P2-(.) and the P(.) are defined on the
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same sample space with generic variable w. Let P" () denote the sample
value of P(). Then, for almost all w, the measure P"(.) also induces a
process on D'[O,oc). It turns out (Theorem 3.2) that this process, which
we write as x'(.), is a stationary diffusion of the form (1.1). Since . in-
dexes the sample value of the measurt P(.), it indexes the entire process
r" (.). and not the sample values of that process. The necessary probability
background appears in Section 2. The proofs- are developed in Section 3.
We spend a lot of time on the simple case (1.1), since it allows a relatively
unencumbered treatment of the basic idea- of the functional occupation
measure method. Section 4 gives the details of an application to a control
probiem for a controlled form of (1.1). Applications to the singularly pr-
turbed control problem on the infinite time interval are dealt with in Sectiori
5. llcre the P'(-) are for a singularly perturbed controlled diflusioxi, and %,t
show that the limit of the samples of the Pr(') induce stationary controlled
diffusions for an "averaged system". Then various approximate optimalitv
theorems are proved. An extension of the results of Section 3 to a reflected
diffusion appears in Section C. The aim is to outline some of the possibili-
ties. Further applications will appear in [G].

2. PROBABILITY PRELIMINARIES.
Definitions. Let S denote a metric space with metric d(). and for each se'
A E F(S). define the set A' = {z : d(z,y) < ( for some v E A). Let P(S)
denote the collection of probability measures on (S,13(S)). The Prohorov
metric [5,p 96] r(.) on P(S) is defined by

7-(P, P') = inf{ > 0 :P'(A) < P(A') .;- c.

for all compact A E 1(S)]

A set {Po(.)) E P(S) is said to be tcht if for ealh e > C. thcrf is
a compact set Ki E 5(S) such that sup. P {x 15 K ) < We say tt'"a
{P,.(.)} iE 'P(S) contreoes weakly to P(-) in T'S) and is written P,. = T

if 'F,.. f-- ff(xlP,.(d:) - (P. f) for all f(.) E Ci(S). Ve hwx

Theorem 2.1. [4.p101]. if (S.,d(.)) is complhi and separable then
sc, is the mctnc space ((S). r(.)).

Theorem 2.2. [4. p1 04" (Prohorov's Theorem) Let S be compltc and
scparablc. Then a set M C P(S) is rtlatively compact iff AMf t tgh!. Alsc.
P,. = P is equivalent to r(P,. P) - 0. If S is compact, then the topology of
weak convcrgence is equivalent to the topology under the Prohorot metrlic.

Random variables. Let X,. and X be S-valued random variables with
assoczated measures P,(.) and P(.), resp. We use the terminology tigt.
nes, of {Xo) and weak converoence of X. to X (written X, = X) inter-
changably with the terminlogy tightness of {P,(.)} and the weak conver-
gence P,.. P. The sense of the usage of the words tightness and weak:
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convergence depends on whether the objects in question are measures or
random variable-, and the abuse of notation should cause tio problems. The
following "Skorohod representation" will be very useful.

Theorem 2.3. [4,p1O2 ]. Let S be separabh, and let P,(.) and P(.
be the measurts of the S-valued random variables X,. and X, rts;.. Lei
X,. ' X. Then thre enists a probability space (i?. P:7 ) wth S-ialued
raidom rariablef {,. } and X defined or it, such tha X,. and N hauf tl
distributions of X,, and X, resp., and d(X,.X) - 0 utpo.

We will use the Skorohod representation quite frequently since it sim-
plifies the calculations by allowing us to assume that the weak convergence
is actually w p.1 convergence in the appropriate topology. In order to, sim-
i,11Y tlt Ictaio,. when usiig the Skorohod repre.ntao w: wi Wj.

use the "hat" symbol for the new sequence, but will retain whatever the
original notation was for the sequence.

Afcasurt. valued random var:alle, and proccsscs. Let Sc be a complete
and separable metric space. Then P(So) = S, is a complete and separable
metric space. Let Q,, and Q be 51 -valuea random variables. Their prob-
biitv distributions are, of course, elements of P(S I ). Suppose that {Q, } iF
tight (in the sense of a sequerice of random variables) and let Q, = Q. If
Q is a measure-valued random variable, then we write the sample value as
Q" or as Q- (.). Suppose now that the Skorohod representation is useo sc
we can assume that IQ,(-).n < no,Q(.)} are defined or. the same sample
space and that the generic variable of the space is .. By the weak corver-
gence and the Skorohod imbedding Q"(.) - Q"(.) for almost all , in the
topology of SI. I.e.,

for almost all ".. For each "., the value Q' (.) is a measure or, Sc Let
-1c denote the canonical point of So. Ther.. for each ,, Q1() rduces ar.
Sc-valued random variable which we denote by X" and whose values are
denoted by X-(,.c.). Note that the .; and n index the meastre. Vit:.
the rmeasure Q. (.) giver.. ,; gives the sample value of the rando ,ctl

associated uwill. 1lat measurc.
Now, Theorem 2.2 and (2.1) imply that for almost all .

,. = ",, X,,

By (2.2), we car use the Skorohod representation for the set of random
variables ({X ). X") for each fixed ,: not in some null set and suppose
thaz they are defined or some sample space with generic variabie -C_* Then
for almost all .)c,

d(X0 . (2.3)

For our purposes it will usually be sufficient to work with each ,. and then
the relation (2.3k will be quite useful. The following theorem provides a



useful way of proving that a sequence of r(S)-valued random variables

Qo )is tight

Theorem.2.4. Stipose tsai there ary compacl S,. 1 Sc such that

lim supP{Q (SC - S) > -} = 0 (2.5)

or. (qurtal n ti.,
limsup EQo (Sc - S,,) = 0. (2.)

Thrn {Q.) 1 f,, g ('as a sequence of random ,,anabtes).

Proof. (;v,. t > C. % nlefed to find a compact set 11', 1n P(SL I su i,
that sur.. P{Qo ' 15' ) < t. By (2.3) for each > 0 there is a compact set
S, such thal

sur PiQo (Sc - SC) > c) <.
0

Let c, - 0 and ., c, < x:. Giver, > 0, choose mn such that Z1111 C, c< 1.
Define the precompact set

= {Q E :(Sc) Q(Sc - S,.) M0i>_ .

Since sup0 P{Q, , A.) < t, the proof is completed. Q.E.D.

3. LIMITS OF OCCUPATION MEASURES FOR DIFFUSIONS

We return to the special case of Section 1. where the system is (1.]). and
Pt'. is defined by (1.2). Define S' D*[0. oc). Theorem 3.1 gives a
c fc r fct i, l 'ig -ness of the norm& xz(-c occupat.ior ne ures

Theorem 3.1. Assume ('A.1' and (Al.." Tier; P'") z5 c :7 C-

ialhed rar.dom taricGe. and {PT'.T < x.) is tiohi.

Proof. For ea:r. B E F'So) the measurabiiuy of the process
implies the (-. I i-measurabiiitv of the function with values 7* k. B) Thus
Pr() is a random variable for each T. By (Al.1) and (A1.2). th- sequence
of processes {z,*() is tighnt. Thus for each t > C',. there is a compact sct
K' ir, Sr suzL that P{z (.) E S-' - K0 < . all f. This implies that

EA{S - '} = P EP {S' - K,)dt < ,

and the tightness of {PT- T < c) follows from Theorem 2.4' Q.E.D

A rncrk cr. v.c lawor.. Let {.P7 , (.).n < oc) be a weakly convergen:
subsequence vi. hmit denoted by P,). Let ,2. be the generic variabie or.



the sample space on which x(.) is defined. Then on this sample space, for
each ., we have the representation

'7(C) = 'I{( )j(G)dl, (3.1)

PT(G) = 1 , ,( ))(G)dt. (3.1b)

Now, let us use the Skorohod representation for J{isz,, n < o¢,5), and

let the gereric variable of the common sample space be ,' . Then. using tlo
same notation {IPT(.).n < o, ,P(.))for the imbedded random variables,

'I- l.) ContixjU,.!! I( hold t thht the distributions of -,ijc two- .id- a,-S eq-f

for each T anid G. Let ='r denote equality in the sense of distributioi.

Theorem 3.2 Assume (AJ). (Al.f) and let T,. - oc indez a wtakh.
convergent subsequence of {/-'(.), T < oo} u-ith hinl d,,oled by P(.).

Assuc that the Skorohod revrrs enlaton is used and thai c: denotc"
thr oryzcrzc r'artath of the sample space or which {PT7-. (j. < OC. P.)arc
defined. Then, for almost all,,., the sample value P' . of P(-) Inducesr,

statzonary difftsion process i" (.) on S' with differential opercior A. Let
S (.) denote the stationart' measure of z"(.) . Let K(.) dcnotU a I, outdcd

and continuous real valued function on S'. Then

- El-,: (.).(.

For k.) E Ci 'R)

0-t p.) is" e measrt Ialled (or, tht Bord- sets of P' random rc"a':
talfe, $ (.) Under (Al.,;. for almost all

' o. =

arid tOe subseuence is trrelerent.

Proof. Stationarit. We use the Skorohod representation for {P 7z(.).

n < ¢. 15(.)} all through the proof. Let G E S,, and define its left shift

G,= {.) :c'.) E G). Then

P2 -G)., h, f :(G,)dt = . I,,. d )) (Cdt,S(G) di



T (G) - PT(G) = 7 : j ,,( ))(G)df - 1,( ))(G)di.

Tflus P; () - P (G) -0 a T 0 for all ,: and G. This and the weak
cc,,vergence implies that P (G) = P(GC,) for all ,. and all sets G with
P- fC) = C' Tins. in turn. implies the stationaritv.

Ii. the rest of the proof,we will only characterize the process induced
by thc values f (.)-of the limit P(.). By the definition of the sample
occupancy measure P;(.). for each real-valued, bounded and measurable
function F0(.) on S,, we have

fFt,(c, iPr CdC,)-~ J Fo(,()d'. K; 4

I. fact. (3 4) completely determines PT(').
Let hi ) be a bounded and continuous real valued function of it< ar-

gumernts, let q be an arbitrary integer, and let f,.r.r + s be sucl that
< < 7 ,< q, Let f(.) E C6(R'). Define the function F(.) b%

)= h((f,). i < q)[f(O(r+ s)) - f(¢(r)) - Af(o(u))du&. (3.5)

Tie function F(.) is measurable but it is not continuous at all points )

It is continuous at each (.) which is continuous [C, p121J.
Since the processes induced on Sc, by the P; (.) are continuous for

earl. 4- and T. the sample values P (.) of the limit measures also have
the;_ suppor, on the set of continuous functions in S,. Hence. even though
the function F(.) is not continuous at every point in St,. it is continuous
v.1 r eativ, tc P ,) for alnmost al, ,. since it is continuous at each
c,.0 whict is a continuous function. Due to this fact and the Sko:ohod
representatior. [7, pS.l.

fF(o)P;(do) - /F(c)P'(dc,). (3.

f .rnos: aL . Let E ad (.) denote the expectation with respect tc

and the process which is induced by P' (.). resp. The result (3.2) is
Jus" a consequence of the weak convergence. By the definition of F(.). the
gn:, hand side of (3.4), evaluated at , equals

FtQ)P"(do) h <(. q).

-0 ( ) - f( (0) Ai M (v))d7:



It wil! be shown, below that (3.7) equals zero for almost all .,. Thus. owing
to the arbitrariness of h(.), r,r + s, , t,, f(.), for almost all ,, the process
x- (.) must solve the martingale problem for the operator A.

Let Kto()) = k(c,(0)). Then, for almost all ', K(.) is continuous
p.1 relative to the measures P'(.). Note that

I J T d 1 K.(z,(.)d =" ( )pT(dp),

ti it stationarilv of -(.) for alnio, a!l ! , thi. ls .- t _Xrcs.. or,
ttie rigtit equals (for almost a! ;) f k(x) r (dx).

Proof that (S. 7; equal, zero for almost all;. By ]to's Formula and the
represeritation (3.4), we can write

fF(QP (dc,)=

= . jdt g(r)du(r)

for some bounded and non-anticipative g(.) This expression goes to zerc
ir probability as T - cx. This fact together with the weak convergence
implies that (3.7) equaLs zero for almost all ,. Q.E.D.

4. THE CONTROL PROBLEM.
Dcfnrzizon, Iri order to presen, the results ir. a relaive!y simple wa*. v..
work vith stochastic relaxed controis 3 . [S'. Let U. the space of values
for te control., be a compart set ir. some Euciidean space. Let . dt-
note a filtration and u(.) a standard vector-valued 7-Wiene: process. Le:
.MI(U x [0. o)) 5'" denote the space of measures t'(.) or. X !r.'
wi:}7 the folowing property: v(F x [CI.:= ' = ",. all .. Such V.)
are called (deterministic) relaxed controls. On S"' we put the "compacl-
weak" topology: i.e.. v,.(.) - v(.) iff .) - (0.v) for each o(.) in
C0 (U x [0. oc)). Under this topology, Sc' is a complete and separable metric
space. If v(.) E S'. then there is a dervaltve v,(.) such that v,(.) is a
measure or. B(U) for each f. v, (C) is t-measurable for each C E B(C). and
v(do d4) = v,(do)dt. Define So = S( x St'.

An admissible stochastic relazed control m(.) is an S'-vaiued random
variable such that m(C.i) is .7-adapted and rn(C.-) is measurable for
each C E B(U). The derivative m,(.) can be constructed so that for each



C E P(L'). "r,(C) s 7,-adapted. If u(.) is ar. 7,- Wiener process we
sometimes say that (m(.). w(.)) is admissible or that m(.) is admissible
with respect tc - (.).

For adnussibie (n(.). u(.)) the controlled SDE is written &,

d= blz.o)rm1 (di)d, .- (z)du, (4.1)

We use the following replacement for (A1.1).

A4.1 er(.) and b(.) art continuous, a'(.) and b(.,a) have at most a linear
prowl11, a: 7x - ,C. uniformlt' in a.

Lct A' deci , thif differential generator of (4.1) witi. the coatrc. fAx-
at o E U. For an admissible stochastic relaxed control m(.). let A' derice
the differential generator of 2-(.). Then, acting on smooth functions of z a:
time 1. we car, write A'f(z)(f) = f A°f(z)r)n(da). Define the "shifted"
stochastic relaxed control Arn(.) = n(t 4 .)- ie(I). The relaxed control
A. m(.) is the one that is actually used on the shifted process zx(.) s1wct
(..:,n)(-) = rrm,(.) and

dx, (5,) = dsj I b(x,(s),o),,(do) + (z,(s))du,(.

De'hre the occupation measures P'(.) and 6t(.) by

P/5(B: x Cc) = ){",():(Bo)TiA,, ()}(Cc).

P7 (.) = ').

Cee. Cc SE" ,5 nd B: S '{)J.

Theorem 4.1. Assumf (A1.' and (/ T.). Then { (). < x
a tiohi set of T'PS['i-ta!hed random varables. Let P(.) denote the lzi, of
sOmE WEakh converoent subsequence (indezedbt, T,. - x /. and str:.o
fI.at Ike Skorohod representation is used for J P% (.).n < oc. P7()}. Ttc,..

for almost all ,.. P' (.) induces a process ( + (.).7: (.)) on S, and tK. d:S-
Iittton of ft,. shifted pair (i (.). AIn(.)) does, not depernd on 1. Fo.
eack .. there is a filtratior . and an .7 -standard vector-ralutd Wiener

process t! (.). such that s) :5 admissible (with respect to ti '.); and

ds- = fj b(", o)?r(do)dt + a(P')tT

Define the random variable K with values

Vi .k(s(s). o)r, (dao)ds.

10



T,1 1 -(z(1),c).-,(do)dt =:> K (4.2)

Proof. The proof is similar to that of Theorem 3.2. The set of pro-
cesses {4,m(.).A < oc) is tight and so is the set {z 1 (.),t < oc). This

imphes the tightness of {IPT (), T < oc}, and we need only characterize the
limits of the weakly convergent subsequences and explain (4.2). Let T,,

index a we 2Jy convergent subsequence, with limit denoted by P(-). Let

( " (.).r (.)) denote the process induced by P (.). The asserted station-

r i- proved a- ir. Theorem 3.2. Let V,(.) and t:, (.) be in C,(U x [0 -x)

and define (t". ,), = .f ..f t(s.,)v(dad.) r ' /7 . (l. o)v,(do~d. Cl ,ose
h-), ).f,. - as il Theorem 3.2 and let 1, bt- all artbt r&r. t:,.
Define the function F(.) on Sc by

F(o. v') - h(Q(t,), (t,, ,),,,i < q j < 1D):f((j'(T -'))- f(¢i(r))-.IU+* c.A°f(Qr,,),,.(dcdt,'.

By Ito's Formula and the definition of PT(),

FCc v)PT(dcdL,)=y FJ,(z, (.). .,n(.))d( =21

- h h(z,(,) A. m,,):.. -i < 9,j < p,) df f zt)c ( U..' ))C,  -

Let us use the Skorohod representation By the same argument used ir.

T; r . ... " we have, for almost a!1

{ F(c. v)P(dodL') = 0. '

Ecuivalent, . for almost al '. and with E" denoting the ex.pecta-icr. w.:-

respect tc P- .)

j jAof(* '(u)),'(dod ): = 0.w.p.1.

Anadogous to the situation in Theorem 3.2. the process i (.) solves ti .t

martingale problem with operator A," and with respect to the filtration

B(.i (s). (-. s). s < 1). All the conclusions except the representation or,

the right hand side of (4.2) follows from this.

11



Define the functior, K(.) on Sc by

Klf,' ,.V) -" k (0 (s),o)v(d, do).

Tije right hard side of (4 2) is obtained by noting that the limit of the left
ha'd side c4f i. equas the limit of

TI A(z, (.)z, m .))dt= ] f KC , v,)P5(dpdv).

Q.E.D

5.SINGULARLY PERTURBED CONTROL PROBLEMS:
LIMIT AND APPROXIMATION THEOREMS

II. this sectiol. At: wor w.ith the siugularl% perturbed diffusioi, nudte

dz' = / G(z .:' .o )rn(do)d1 dtc(z',:')du;, (5])

(d:' = H(z',)d + V/v(ze,:e)du,, (5.2)

The w,'.) arc andard vector valued Wiener processes with respect to somie
filtration 7. ar m'(.) is art admissible relaxed control (always with respect
to -r, or (u.;'.).w2 (.))). The contro! takes values in a compact set U. The
mode' (5.1). (5.2). is the most common one used for stochasti: contrco.
problerm, unider singular perturbations !iP1.The model wifl aio
reauive!y sim ple and generic development of the averaging methods

Defitnz.tc r.. W say :ha: the solutior tc. (5.1), (5.2) is trrgL! 2t. 1!,
LccI: sek , if :. Z i s:ri :,U:1or cf (rn'.).u,(.).u (.) detcrmines tr, c f

We use the ar.a:ccc.us definition in the absence of a contro: Ve use
F" to denote the. expectation under the control m(.), and wath the initial
ccrdtior. :. t te distributior, of (z'(.),-(.)) actual]%y depends on th-e
io:nr distributior. of (u (.).u2(.rn(.)). but we omit the Wiene: processes
frorn some of the notation for simplicity.

Thc fired-z. rescaled ".fast process '. We exploit the time scale differ-
ences betweern z' (.) an d :'(.) in order to approximate (5. 1) by a simple: 'av-
erage sys :em Def.r. t.e 'stretched out" processes -0(') " :-(,).(1)=

:ef(H) Ther.

Cz-' o)=>(dt,) -, (5.3

12



d = '(z, ')di + t.(z,)d ,. (5.4)

Where the ti,(.) are standard Wiener processes In fact. vl,(t) =

Since x'(.) is "nearly constant" over "long" time intervals for small f, (5.4)
suggests t .at. or, the appropriate long time interva,. we can treat z-(.) as

though z'(.) were fixed, and use this fixed-z process to. average out the

the :'(.). Witfh this in mind, we define the fixed.z process :G(.,z) (written
simply as zc(.) if the parameter is known) by

dzo = H(z,:.:) + v(z, :o)di.-2 . (5.5)

Let A dcote the differential generator of the fized-z process wtt, pa-
I a ,, , A..V tl,, drv try PC 71r Iator of ( (..: ' -)). ,,d ' f

\%t will use the fohowing asisumption.

AS.1.For each, Initial comdifho, avid each z, (5. ) has a unique weak

s(U. .1011.,101 Fr tacl, z. -' ('ix) /,a, a untqu arGanl McstCG rr PZ(.

Thre Is r contntioz., matrir i(.) sucl, that

= a(z) = ferz.:r'( ,:)p,(d:).

The factorizatior. assumptior or. a.".) is a convenience for the notatiol.
since it aliows a simpie and concrete representation of the averaged process.
but it i s no" necessary for the validity of the basil results.

Ti,e ateraced st,.em. Define the averaged functions and system by

(r. = fk(d . : .k (d:}
f G

* c = iC ormdi -?zidu :c .

Here r'.) is an admissibie re axec cczn:r-c. wit res.ect tc tLe stanca-
ve:' :-',a.'.-_ ' Vier. er V ozess I

.Lct .A^ dcrc f .h, dF5crrntba.' ceeraor v! (:7.. stn, cor-r.' C! a
a ie .4" c chOt associated utl. tMe rylaZed conirr ' r.) W\e wil use

,47,z G . .o ) = G o -,z . ) G .z o -u

'z. :.o) = kc(:. kj x.a).

T4 c-. ) cr.d the G,:. art coritm ou avid have at most a hnCr, Cr uhi. IT.

x as - x r. frm!; ir c.: The k,(.) crf b dtd ad continuous

Av.r H;.) and t,'.) art continuous and hale at most a linear oroutl



G0(z)= Go(z.:). (d:). kc(z)= ko(z,z) p .

Tit cost funcion. Define the pathwise and mean costs:

= irif

" 'y(z z~r' uw.) = limsupE3 .(z,m,, ),(5.6)
T

inf 7(ZT , 'Y).
adn. controls

\We keep the arguments m ,,,u. in ' since the value dep'erds orn the
joint distribution of the triple n, u: and not just on inc. If the iniia.
conditiorn r is omitted in "C(z) or in y(zzm,u), then the values dc not

depend on z.
Note that neither -'(.) nor r involve expectations. Tiey are sirt-

ply pa:hwise averages. The mait, results are Theorems 5.1 and 5.2 belno
Loosely speaking. we wil; show that a- c - 0 and T - o.. the pa'nwn:t
average cost " (z. .u.u 2 ) wih converge to the mean cost per uni-
time for a. averaged probiem. where the system i (5.6) and the cos: is
,'. .rr.t . Aisc, urder broad conditions. giver, e > C there wil. Le s:Tj.z

sequence {rnr(.)} such that ".(z.:. r. u1.u,) converges in probabilh' tc

witir. e of the infirrium 1c, of the costs for the averaged problem. ar.d ther.
is no: admisibie {rn'(.)) for which the limit is less thar. ,. Ttwav ,

c- 0 and T-- -z wi , nc : be important. Such results heir tc Ius ::.
use of the averaged probiem ever on the infinite time intervaW \V wi . us-
the conditior.

A5 4.For each [ > C' aid c > 0, there is a e-opzmc! (fo"- 0! co.,"

funcucc! - (z. :. n'. u:. u2)) admissi!le rn(.) stct, that the corrtsvor,,1T.c

((,). :e(4t. < x, > C')
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The condition (A5.4) implies that there are t-optima! policies for

whAficf, the 5%ystems (r() '.)do not explode a., I - 0C and i- 0

We folio%% the terminclogy of Section 4. Define the functional occu-
pariton measures P''(.) and P;~( by

Thieorem 5.1. Ascumf (A 5.1) to (A5.4'). avd &.4t the rylazed cowmArl
'A~,for AnpiU, t' > C TI, r r ltdr sequencf P( 1'(Sc)-valiU-d rondom

i rizca.I" t1
* 1 > C-. < o) v, tiqtlxi LoP,) d',iof G tua& iivrii,

5('~ eq~lC.~ - 0, T,, - ) will, ,.alaue P'(+ For aimos., Gll -

P'j. itdvcf' c atrva'tr ces (i' ( ),() or~ Sr I lid Scu!C lJ.C1
thc distrib~ution ef( (i .rvih"()) doe.4 not depend on t. For almosi all,
jit'r C -41G~jdrrd t eclor-t ahied Wirnerr rrvces t!b (- such. th~at ni.

~dnasa1vLitI. Ttsj'cCI V arid ~ )ri(.a aaf 7C

ft.i.t) Ii. k (i)o ) n, (dk) d5.

Remark. Ir. the last equation v(i Iis the cost for the statoar.
proitmrr. where ti~e initia' condition. i (0)i s the random variabit w*i.

statioor.v ' istributior..

Proof. Trt i < x. e > C) is tighi due to (AV!.2) ard (A074iTt
< ~ > C is a±iway :g; Tnese f i p~:~a'"

> <. T < r az ) nJcg cu 5 zc t i e c ase o-' T:, tc~
Le: F, ) h+,, t. ' *~*s. be a-, Irn Theorem 4.1, and le. £'i denott -:it

ir. Theorem .1. by Itc. Formula and the definition of P4.'-) we havc

-7 d.' j < 9u)Gz~u. :S ),)f(Z' 7 - Sdo

-~I du trace f:((~ ~u) z (t; )



= - I dt d,,hz (,,, ,, ¢ , < q... <F,).

• ,. C : ,)<' (,) ,:,(,,))d,.,, (v ) . C5S)

It car, be shown that, by using the averaging method of Theorem 3.2
we can replace the G(.) and a(.) in (5.8) by G(.) and 6(.) without changing
the limits as, ( - 0 and T - oc. Only a few of the details will be giver.
Consider the term (5.9) which is a component of the third line of (5.')

,' ' (v())G0(z (,,), ::(v))du Q) 9

Let , = nf for am integer n and f > 0. and rewrite the integral as

.-- Io :;f,(z'(,))ao(x'(,v). :'(,v))d u.c.

Dcfi( ti,'c shifted rescaled processes 7(1(u) = c Zu), "" (1
,,-A akt one of the summarids in (5.10) and change th tir n scale , -

tc e

-f, r ) :'c (u))du (51

Ve study (5.11) as -- 0 arid c/f - 0. Note that for eacl . > C.

sur P{su, ,z(u - (0) > it,} - 0 (, II

L,efine the occupa.cor. measures P','%(.) and P' ,

" ... . ..- j = , : .... , ., ) (A ),:, . . , ,,.' ,.

-,. ,,., j, .. t'< ' " (. !',

T '..5:11 equal.s

By at. -occuTation measure argument" similar to, that used wit. Thec-
rem 3.2. and using the fact that . varies arbitrarily htUe over tae
iraterval [C~ " ( ~a impied by (5.12)). we can shoA that a t,( - C and
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c - 0. the difference between and the measure whose z-component
is concentrated on z .,(.) and whose z-component is concentrated on
the stationar% fixed-z zv(.) process with parameter z;.,,,(O) converges
%eakly to zero. This convergence is uniform in (t.,r). Thus

E ! ( "r ,1 -c-i 11

f; ('o(v))G,(zo(u), z'D(v))du-

Llf (x (-r if; ))Gc)(x'(- 0.o:..,

u:j :fcr.,y. % j,. Thus 'e car, replace tf- righ: hadid par, of t i : L :d i"',

of (5.S) by%
"'!f(z(u :' ' ).,z(U),o) ,ido)du.

Sinii)arly for the a'z. :1 term in the fourth line of (5').
Azalogousi% tc the case of Theorem . the right hand sid, of t-)

goes to zero in probability as c - C and T - oc. We can also replace the
k(.) in the cost function by L-(.) without changing the limits Thus the cost
functional has the same limits as those of

The rest of the proof is no differen: that. that used for Theorem .ar,_
the detais are omitted Q.E.D.

\We define a -orzma-. fcdback coro! ' for the aterrced .t .'If 1( 1,
art rneautrat, C-talued feedback con-r!, for Oacl. t/ atercc -t'i'5

.iC, ia, a tvncI.e ueak sr.5c sok5'tor and a tntqre tiaricr! mect:1 c'.C
sucl !'r z. -' and admissible (mt.). uv()). - i <. 7 'U -

f I' nou state ir, "aTrizmate opiimahitt t hec-em'.

Theorem 5.2. Assrme (A.J.-4t dcosd- t e
s.'4,M ( U t.t, cosI function Fz. . u). For eac f > C. let ti, c
be a ccrltnveus '-optima! feedback control ti

. -) rill. tV, rr.,.c,, t..

• .'() > (.I < Ozc is tight. Then

-(Z.-. V ,u1. u.0 - -Y"(ti) _ C - t '1

ir. p;roba.1ii?., tritc.,-v, l t i . eacl. compacl (z. :)-set. as t and 7 c( Ic thfI-
limits Ft- ay:t I. > 0 aid sequence of admissible m'(.) saltsyfnic (A .7')

msur;,P{-.z .:.nm.u..u:)< -. = C ([,14)
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Proof. (5.13) follows by Theorem 5.1, with the m'(.) replaced by uk(.).

If (5.13) is not true, theL there is a h > 0 such that the hmsup is greater

than 6r. Choose a weakly convergent subsequence of {PT()} with the

limit measure having the values , (.) and with ( (.), r" (.)) denoting the

induced process. Then

Pi-, . Yrin-' , 11 ) :S 1C - ,I} 2_.!o

a contradiction to the 6-optimality of u' (.) for small enough f. Q.E.D.

.REFLECTED DIFFUSIONS

\%, v. ill do til. ahalc-g of til miethod of Section 3 for a rt.fct-d 1.

The "Skorohod rroblem" model of the reflected diffusion will be used :i 1
The results of Sections 4 and 5 can readily be extended tc tLhis c e

will use the following a"sum)tiori.

(A.1) F i. t/. rh,'L- ejo hotndd orn set ini R" wiLk a tzce cntli,-

tct.dzfTr,.ft,1h ,otvdari" f. Lrt n(z) denote 11 th outard no,,lG; If

af at z. and he! 3tzj denote the rtfiectaon directton. Suppose thal %i r) z,

Le, rrstnction to 'or of a Junction which is twice continuously dr,4rrrnynal.,

,r c nelgltC.,h rd o cr.d ht te, Cry be or > 0 sucI, tAat -'(r~n': . > a.
al! z E 01'

The Skorrood proicyn. Let wi.) be a standard veCtoT-valued F,'

process. We say that zi.) solves the Skorohod problem if it is 7-adapted.

con:'nuous. andc there is a. 7-adapted function Y(.) such that fo: z E I.

I- (6 rd !'j

z., -=-- / 'z,'s))ds- -, e'(r(.)ldwk"jr '.)

/ r. .. .

J,

' ... ... - -S 'i Deft:,f t:* cc-
cupatuon measure P '.t fc.r the pal" of processes (zand zhc.
Ger.n Fi- "r. (1.2. In order to get the needed tightness in the thec-

rem below we wil: need the foliowing result [I1.Theorem 4.1. Let C"C . 7"

denote the space of cor.'inuous R-valued functions on the interval [0,. ?

with the sup norm topology.

Theorem 6.1. A.stme (AC.:) and, for each T < cz ccnsider the

Sk oro, od ro I1cr,
-k). <



ter fi.) avnd k'.) r an CI" C.7 and

k(F) - k(s

I'( = li,,I)J(QF~dlkI(.').

4f f(- i -' a cOmpact se, t, e (r(.).k.), It(.)) ary in a compact set in

Tlaeorem 6.2.Assume (AJ.1) and (A6.J).Then {z()..,jYI().t <
x ) and {fiT(). < oc) are ioht Let P(.) drnoul the limit of c Ufaklt,
cvicri~r nt su-seqvrcc of {PT( ).T < oc) Then, for almost all the€

. t,:' LI.! j' ) 1, dLuc. C .'tLI(Ptf't ].v~. .' .) ,Ciaf17~rC '(" .i rI,,

Proof. Tire proof L similar tc that of'-"heorem 3.2. The tightness of
j < Otz't I. is a corsequeiice of Theorem C.1. and thef t~gi,,t.-s

of the Sequence of processes

The tightness of the sequence of measure-valued random variables folhows
from the tig,.tness of the above set of processes. Let P() denote the lin.: of
a weaki% convergent subsequence of {P (.). T < oc). and let (.i- (.). I'.))
oeno:e the process induced by the va!ue P (.). The i" (-) ard i "') are
continuous processes and z" (1) E T for al f. Also I)' W(.) car. increase onJ\
wiet -- 1 r. - The s'a-ionarlty of the limit processes is provec as i& .

Theorem 1
We need c,:.iv characterize the limits ' (.j. Let c).) denote the genler.C

.:,.'? ;: " _'x . .-.-; ten ,:: -r, -cr r ss ? (. .an d .Y t, . - , , .. ":

D" '. c c a-sc,:ec witr. the process Redef,rie :h 1 fur,ctior. F
used C, j , , ) foli10ws

F-C ,.,) = C.c,,.t,, :,, < C c,-

A f1.4l , (c " U ) !.. o , u d v , L u ) l

T15s fu.:tio:. is def-red for al: c, ') D' C'. ) arid for al' v'.)i. D'
wr,-Cr. are of bounded variation If Lt') is not of bounded variatior, seT
te value of the function equal tc some very large value. Define Y.

B.7(s) Ks). s < 1) Then

f' i (t)) -. f(i' (0)) - Af(i" (u))du

)) 3 () d, v

.&... --



is an 7,-martngae Thiis implies that there is an t1' (-) such that the triple
(I~(). )(.).i () satisfies the Skorohod problem (t 1) Q.L D.
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